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Chronic obstructive pulmonary disease (COPD) is a serious health problem. However, the
molecular pathogenesis of COPD remains unknown. Here, we explored the molecular effects
of cigarette smoke and bacterial infection in lung tissues of COPD rats. We also investigated
therapeutic effects of aminophylline (APL) on the COPD rats and integrated transcriptome,
proteome, and metabolome data for a global view of molecular mechanisms of COPD pro-
gression. Using molecular function and pathway analyses, the genes and proteins regu-
lated in COPD and APL-treated rats were mainly attributed to oxidoreductase, antioxidant
activity, energy and fatty acid metabolism. Furthermore, we identified hub proteins such
as Gapdh (glyceraldehyde-3-phosphate dehydrogenase), Pkm (pyruvate kinase isozymes
M1/M2), and Sod1 (superoxide dismutase 1), included in energy metabolism and oxidative
stress. Then, we identified the significantly regulated metabolic pathways in lung tissues of
COPD- and APL-treated rats, such as arachidonic acid, linoleic acid, and α-linolenic acid
metabolism, which belong to the lipid metabolism. In particular, we picked the arachidonic
acid metabolism for a more detailed pathway analysis of transcripts, proteins, and metabo-
lites. We could observe an increase in metabolites and genes involved in arachidonic acid
metabolism in COPD rats and the decrease in these in APL-treated rats, suggesting that in-
flammatory responses were up-regulated in COPD rats and down-regulated in APL-treated
rats. In conclusion, these system-wide results suggested that COPD progression and its
treatment might be associated with oxidative stress, lipid and energy metabolism distur-
bance. Additionally, we demonstrated the power of integrated omics for the elucidation of
genes, proteins, and metabolites’ changes and disorders that were associated with COPD.

Introduction
Chronic obstructive pulmonary disease (COPD) is pathophysiologically characterized by chronic airflow
limitation and progressive lung function decline resulting from an abnormal inflammatory response to
inhaled particles and gases in the lung [1]. Although extensive investigations of COPD have taken place
over the last few decades, its pathogenesis is still unclear [2]. Currently no treatment is available to prevent
or halt the progression of these disorders [3,4]. Thus, we still need to gain deeper insights into their molec-
ular pathogenesis and develop novel therapeutic strategies. However, pathologic changes result from intri-
cate molecular network alterations, such as molecular links between subcellular components and disease
genes, rather than form a few key genes or other functionally important biomolecules. Naturally, based on
network thinking, identification of deregulated networks and pathways is an extremely effective discovery
approach [5,6].
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Transcriptomics-proteomics-metabolomics profiling techniques have proven to be powerful new tools for uncov-
ering complex biological processes, which aid in exploration of novel mechanisms of disease pathogenesis and project
future approaches to personalized medicine [7-9]. Transcriptomics studies have proven to be effective for exploring
the entire genome. And the transcriptional networks govern temporally and spatially regulated gene expression pro-
grams. However, gene expression alone cannot provide the details of alternative splicing and protein expression. Pro-
teomics makes it possible to provide the real information on the protein expression and protein function in a cellular
context. Moreover, metabolomics provide a global view of the metabolic environment that is the consequence of the
transcriptome and proteome [10,11]. Thus, integrative and comparative analyses of transcriptomics, proteomics and
metabolomics datasets has a potential to give a detailed view of complex biological processes, such as the deregulated
networks and pathways of COPD [9,12,13].

Previously, we developed a stable experimental COPD model on rats, using a combination of cigarette smoke in-
halation and repeated Klebsiella pneumoniae infections. The pathologic changes in COPD rat airway that are similar
to those occurring in human COPD patients. Thus, COPD rat can serve as a useful animal model for human COPD
pathologies, and may also be useful for serial sampling for COPD biomarker studies and studies of therapeutic tar-
gets [14]. In addition, aminophylline (APL), a complex of theophylline and ethylenediamine, is commonly used in
treatment of exacerbations of COPD [15]. Its main pharmacological action is relaxation of bronchial smooth muscle.
Moreover, APL can decrease IL-8, IL-17, and TNF-α levels in bronchoalveolar lavage fluid and inhibit expression of
MUC5AC and TLR4 in airway and lung tissues in COPD rats [16]. Previously, we treated COPD rats with APL, and
found that APL could significantly decrease expression levels of inflammatory mediators [17].

In the present study, we analyzed lung tissues of COPD rats on a global scale by integrating transcriptomics, pro-
teomics, and metabolomics data streams. We showed, under these experimental settings, that this integrated analy-
ses provided a global picture of molecular mechanisms of COPD pathogenesis, including deregulated networks and
pathways. We further analyzed the effects of the COPD drug APL, commonly used in the treatment of COPD. Taken
together, this integrating study could provide the information for mammalian tissues disease states of COPD and
medical intervention in a preclinical setting.

Materials and methods
Chemicals and animals
APL was obtained from Shandong Xinhua Pharmaceutical Co., Ltd. (Shandong, China). K. pneumoniae (strain ID:
46114) was purchased from the National Center for Medical Culture Collection (CMCC, Beijing, China). Mayer’s
hematoxylin and 1% eosin alcohol solution were purchased from MUTO PURE CHEMICALS (Tokyo, Japan).
Thirty-two Sprague–Dawley rats (16 male and 16 female; 200 +− 20 g) were obtained from the Experimental Animal
Center of Henan province (Zhengzhou, China). The animals were housed in a temperature (25 +− 2◦C) and humidity
(50 +− 10%)-controlled environment with a 12:12-h light/dark cycle. Feed and water were available ad libitum. All
animals were handled with humane care throughout the experiment.

COPD model and drug administration
The rats were placed in a closed box and exposed to the tobacco (Hongqi Canal R© Filter tip cigarette; tobacco type, tar:
10 mg; nicotine content: 1.0 mg; carbon monoxide: 12 mg, Henan Tobacco Industry, Zhengzhou, China) smoke of
eight cigarettes for 30 min, twice per day with 3 h smoke-free intervals during the first two weeks, and to the smoke of
15 cigarettes for 30 min, thrice per day with 3 h smoke-free interval from weeks 3 to 12. The K. pneumoniae dilution
(6 × 108 CFU/ml, 0.1 ml) was dropped in an alternate fashion into the rat’s nostrils every 5 days from weeks 1 to 8. At
the end of week 8, two COPD rats were killed to collect the lung tissues to validate that this rat model was successful
[14].

In week 9, COPD rats were divided into two groups with ten rats each. Then, COPD rats were intragastrically treated
with normal saline (2 ml) and APL (2.3 mg/kg) every day for 12 weeks. The control rats also were administrated
intragastrically with normal saline (2 ml) for the same amount of time. All rats were killed at week 20 (Figure 1).
The lung tissues were shock-frozen in liquid nitrogen and stored at –80◦C before use. The experimental protocol was
approved by the Experimental Animal Care and Ethics Committee of the First Affiliated Hospital, Henan University
of Chinese Medicine. The animal experiments were conducted with approval of the Committee on the Care and Use
of Laboratory Animals of the First Affiliated Hospital, Henan University of Chinese Medicine, China.
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Figure 1. Establishment of a COPD rat model and drug administration.

The flow chart explaining the COPD induction and drug administration regime.

Pulmonary function analysis
Pulmonary function data were detected. The changes of rat respiratory function were converted into electrical signals
through a pressure transducer and amplifier and processed by a computer.

Respiratory data collection
Respiratory function was evaluated by a sealed unrestrained whole body plethysmography (UWBP, Buxco Electronics,
Troy, NY, U.S.A.) every fourth week from week 0 to 20. Rats were placed into the closed plethysmograph connected
to a transducer and a computer. Finally, this work focussed on three measures: tidal volume (TV), peak expiratory
flow (PEF) and 50% TV expiratory flow (EF50).

Histological analyses
The lung tissues were fixed in neutral 10% buffered formaldehyde for 24 h, embedded in paraffin, sliced into 4-μm
thick slices, and supplied for histological examination. Sections were stained with Mayer’s hematoxylin and then with
1% eosin alcohol solution (H&E staining). Samples were examined by Olympus BX51 microscope (Tokyo, Japan).
Alveolar number, alveolar diameter, small pulmonary vessels bronchial wall thickness, and bronchiole stenosis scores
were detected using Image Pro Plus R© (IPP) 6.0 software (Media Cybernetics, MD, U.S.A.). Bronchia and lung injury
scores were evaluated under an optical microscope.

Gene expression analyses with microarrays
For transcriptomic analysis, lung tissue RNA was purified from six rats from each of the three experimental groups
using a Qiagen RNeasy Micro Kit (Qiagen, Venlo, Netherlands). RNA integrity and quantity were verified using the
Bioanalyzer 2100 (Agilent, Palo Alto, CA).

Total RNA was PCR amplified using First Strand cDNA Synthesis Kit (Roche, Basel, Switzerland) to conduct
real-time PCR experiments, and labeled using Quick Amp kit (Agilent Technologies, Santa Clara, CA, U.S.A.) and hy-
bridized with Agilent Whole Rat Genome Oligo Microarray (4 × 44 K) in Agilent’s SureHyb Hybridization Chambers.
After hybridization, processed slides were scanned by an Agilent DNA microarray scanner (part number: G2505B)
using manufacturer recommended settings. Samples from randomly chosen rats were analyzed using at least biolog-
ical triplicates. All downstream microarray analyses were performed using Agilent GeneSpring GX software version
11.0. Microarray datasets were background subtracted and normalized by applying GeneSpring GX using the Agilent
FE one-color scenario (mainly median normalization) Processed data were subsequently filtered through fold change
(—log2 ratio—>1) and Student’s t test screening (P-value <0.05).

Protein expression analysis
Lung tissue protein was purified from six rats from each of the three experimental groups. In brief, lysis solution
(4% SDS, 0.1 M DTT, 0.1 M Tris pH 8.0) was added to each tissue and homogenized in a mechanical homogenizer
(Retsch Technology, Haan, Germany). The homogenates were then subjected to needle sonication (Bandelin 2200
Ultrasonic homogenizer, Bandelin, Germany), and the total protein in the supernatant quantitated using a modi-
fied Bradford assay (Bio–Rad, Hercules, CA) according to manufacturer’s instructions. For trypsin digestion, trypsin
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(Roche, Mannheim, Germany) solution (protein/trypsin ratio 1:30) were added and incubated for 24 h. Labeling
with iTRAQ eight-plex (AB SCIEX, Darmstadt, Germany) was performed for 2 h according to the manufacturer’s
instructions. Each sample was dissolved in 0.1% FA and used for LC-MS analysis.

LC-MS/MS experiments were performed by Nano liquid chromatography (Daojing, Riben) coupled on-line to a
Q-TOF mass spectrometer (Buluke). Peptide separation was performed on a pulled tip column (15 cm × 100 μm
id) containing C18 Reprosil, 5 μm particles (Nikkyo Technos, Tokyo, Japan) using increasing amounts of acetonitrile
containing 0.1% formic acid (mobile phase B) at 300 nl/min. Gradient conditions were: 5–34% B (0–25min), 34–60%
B (25–30 min), 80% B held for 4 min, 80–5% B (1 min).

We used the loess and global median normalization to process the proteomics data. Data were log2 transformed
and analyzed on both peptide and protein level. Statistical significance of observed fold-change ratios was determined
by one sample t test. To select differentially expressed proteins for further validation, two criteria were applied in
parallel: (i) fold change higher than 1.0 for up-regulation or lower than 1.0 for down-regulation, (ii) P-values <0.05
were considered as statistically significant for proteins.

Metabolic profiling analysis
The lung tissue (100 mg) mixed with 1 ml of cold methanol/water (4:1, v:v) was homogenized using a high speed
blender. After ultrasonication, the mixture was placed on ice for 20 min and then centrifuged for 10 min at a rotation
speed of 20000×g. After that, 800 μl of supernatant was transferred and lyophilized in a freeze dryer and redissolved
in 100 ml of methanol/water (4:1, v:v) before analysis.

Metabolic profiling of lung tissues was conducted on an Agilent-1200 LC system coupled to an Agilent-6520 Q-TOF
mass spectrometry. Chromatographic separation was performed on an Eclipse plus C18 column (1.8 μm, 3.0 × 100
mm2, Agilent) with temperature of the column set at 40◦C. The flow rate was 0.3 ml/min, the mobile phase was
ultrapure water with 0.1% formic acid (A), and acetonitrile with 0.1% formic acid (B). The chromatographic elution
procedure was performed at 40◦C as follows: 0 min, 1% B; 1 min, 1% B; 3 min, 45% B; 9 min, 80% B; 11 min, 100% B;
18 min, 100% B; 19 min, 1% B; 25 min, 1% B. The sample injection volume was 5μl. The parameters of mass detection
were set as followed: drying gas (N2) flow rate, 10 l/min; gas temperature, 330◦C; the nebulizer gas pressure, 40 psig;
capillary voltage was 4000 V in positive mode and 3000 V in negative mode; fragmentor, 135 V; skimmer, 65 V; scan
range was from m/z 100 to 1000 [18].

The LC-MS raw MS data were exported by Agilent Mass Hunter Qualitative Analysis Software (Agilent Technolo-
gies, Palo Alto, CA, U.S.A.). Before multivariate analysis, the data of each sample were normalized to total area to
correct for MS response shift between injections due to any possible intra- and interday variations. The total inte-
grated area of each sample was normalized to 1000. Partial least squares discriminant analysis (PLS-DA) in software
SIMCA-P (ver 11.0, Umetrics, Umea, Sweden) was used for metabolite profile analysis [19]. Significance was deter-
mined using the Student’s paried t test and the one-way ANOVA on the mean of three different experiments. P-values
less than 0.05 were considered significant.

Gene/protein set enrichment, network, and pathway analyses
RNA expression data and protein were analyzed using KEGG database from Molecular Signature Database (MSigDB).
We considered regulated pathways only as statistically significant, if the FDR was �1. For correlation analyses on
pathway levels, we compared the KEGG pathway regulation, and we included only regulated pathways with FDR �1
for RNA or protein. Correlation analyses were done separately. We applied BINGO, a Cytoscape plugin, to explore
the molecular function of genes and proteins [20].

To identify the main hub proteins, we generated interaction networks using STRING 10. We applied a high con-
fidence score of 0.7, which indicated that only interactions with a high level of confidence were extracted from the
database and considered as valid links for protein–protein interaction (PPI) networks.

Interaction networks were further analyzed using the Cytoscape v3.1.1 plugin called ‘network analyzer’ [21,22]. We
used network analyzer to evaluate the hub proteins by analyzing the highest closeness centrality (CC), betweenness
centrality (BC), and the node degree.

We applied MetScape to analyze the integrated pathway of gene/protein expression and metabolomics data [23].

Statistical analysis
Differences between groups were determined by one-way ANOVA with the SPSS 19.0 software package (SPSS,
Chicago, IL, U.S.A.). Values are expressed as means +− S.E.M. For all the tests, a two-sided P-value less than 0.05
was considered significant.
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Figure 2. Histological changes in lung tissues of COPD rats and the therapeutic efficacies of APL

A rat model of COPD was induced by cigarette smoke and bacterial infection. The COPD rats were intragastrically treated with APL (2.3

mg/kg) once daily. Control and model rats were treated with normal saline. Histopathologic changes of the lung tissues were detected on

week 20 (H&E staining, magnification: ×100) (A). The lung injury scores were analyzed (B). Small pulmonary vessels wall thickness (C),

bronchial wall thickness (D), bronchiole stenosis (E), alveolar diameter (F), and alveolar number (G) were detected. TV (H), PEF (I), and EF50

(J) were analyzed every fourth week from week 0 to 20. Results were given as means +− S.E.M., n=10. *P<0.05, **P<0.01 compared with

model.

Results and discussion
Pulmonary function and pathology of COPD
In order to clarify molecular details of the perturbations in lung tissues of COPD, we established a rat model of
cigarette smoke- and bacterial infection induced COPD. We further treated COPD rats with bronchodilator APL
to improve the airflow limitation. The pathological parameters including lung histopathology and mechanics con-
firmed cigarette smoke- and bacterial infection induced COPD, as well as the effects of APL treatment were shown
in Figure 2. Compared with the control group, lung injury scores, bronchiole wall thickness, small pulmonary vessels
wall thickness, bronchiole stenosis, and alveolar diameter were increased in model rat. The increase in lung injury
scores, bronchiole wall thickness, small pulmonary vessels wall thickness, bronchiole stenosis, and alveolar diameter
in COPD rats were clearly suppressed by APL treatment, compared with the COPD rats (Figure 2A–F). The main
pharmacological action of APL is relaxation of bronchial smooth muscle [16]. Here, APL treatment also increased
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Figure 3. Molecular functions of regulated genes in lung tissues of COPD and APL-treated rats

Functionally grouped network of enriched categories was generated for the regulated genes using BINGO. The area of a node is proportional

to the number of genes in the test set annotated to the corresponding GO category. (A) Representative molecular function of regulated genes

in lung tissues of COPD rats. (B) Representative molecular function of regulated genes in lung tissues of APL-treated rats.

Table 1 Analyzed pathways of transcriptomics data regulated in lung tissue of COPD rats

Pathway Total P-value FDR

Valine, leucine, and isoleucine
degradation

15 1.43E-06 0.0017

Propanoate metabolism 12 7.33E-06 0.0089

Ribosome 19 1.02E-05 0.0124

Endocytosis 30 1.06E-04 0.1291

Fatty acid metabolism 11 4.45E-04 0.5402

Graft compared with host disease 12 0.00058 0.7029

Viral myocarditis 16 0.000803 0.9725

Antigen processing and presentation 16 0.000908 1.0993

Type I diabetes mellitus 12 0.002375 2.8508

Allograft rejection 11 0.002977 3.5612

Abbreviation: FDR, false dicovery rate.

the alveolar number in COPD rats (Figure 2G). In addition, compared with the model rats, TV, PEF, and EF50 clearly
decreased in the model rat from weeks 4 to 20, whereas, APL significantly increased the TV and PEF, and slightly
increased the EF50 in COPD rats at week 20 (Figure 2H–J). Moreover, some of these COPD rats were intragastri-
cally administrated with normal saline and APL (2.3 mg/kg) every day from week 9 to 20, and then killed in week
32. Pulmonary function were analyzed every fourth week from weeks 0 to 32. In this result, we also found that APL
significantly increased the TV and PEF and slightly increased the EF50 in COPD rats during week 20 to 32. These
data indicated that APL could improve pulmonary function after 12 weeks of treatment (week 20) (Supplementary
Figure S1). The results demonstrated that pathologic changes in COPD rat airways were similar to those occurring
in COPD patients [2,24], and APL treatment could effectively prevent COPD.

Alterations of molecules on the transcriptome level
To identify RNA expression in COPD, we performed a microarray-based RNA expression study on the lung tissues,
and approxiamtely 41000 genes were identified. In these datasets, we then identified 2463 and 2130 genes whose
P-value was <0.05 regulated in COPD model compared with control and APL treatment compared with COPD
model, respectively. These transcripts regulated in COPD model (compared with control) can be attributed to various
molecular functions such as regulation of oxidoreductase activity, channel activity, fatty acid binding, glucose or fatty
acid metabolism (Figure 3A), which are the activities mainly responsible for COPD. Similarly, the large majority of
transcripts regulated in APL-treated rats were related to oxidoreductase activity and nucleic acid binding (Figure 3B).

In COPD model group, the regulated genes could be mapped to many pathways, such as fatty acid metabolism,
p53 signaling pathway and cell adhesion molecules (Table 1). The genes regulated in APL treatment group could be
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Table 2 Analyzed pathways of transcriptomics data regulated in lung tissue of APL-treated rats

Term Total P-value FDR

GnRH signaling pathway 13 0.007279 8.4431

Ribosome 12 0.007577 8.7746

Alzheimer’s disease 21 0.00908 10.4295

Adherens junction 11 0.00934 10.7131

Endocytosis 21 0.011227 12.7442

MAPK signaling pathway 24 0.032266 32.7012

Huntington’s disease 18 0.045681 43.1407

Abbreviation: FDR, false dicovery rate.

Figure 4. Molecular functions of regulated proteins in lung tissues of COPD and APL-treated rats

Functionally grouped network of enriched categories was generated for the regulated proteins using BINGO. The area of a node is propor-

tional to the number of genes in the test set annotated to the corresponding GO category. (A) Representative molecular function of regulated

proteins in lung tissues of COPD rats. (B) Representative molecular function of regulated proteins in lung tissues of APL-treated rats.

mapped to adherens junction, MAPK signaling pathway, glycerophospholipid metabolism, Wnt signaling pathway,
etc. (Table 2).

More information oo the regulated transcripts is shown in Supplementary Tables S1 and S2. The highlighted gene
transcripts might serve as a starting point for further biological pathway information analysis and potentially repre-
sent candidates for biomarker exploration.

Alterations of molecules on the proteome level
We next sought to examine their expression profiles at the protein level, and identified 191 and 187 proteins regulated
in COPD model compared with control and APL treatment compared with COPD model, respectively (Supplemen-
tary Tables S3 and S4). The COPD model group (191 proteins) shared 94 common proteins with the APL treatment
group (187 proteins). Out of the 94 proteins, expression changes of 54 proteins in COPD model was down-regulated by
APL treatment, suggesting these proteins might be related to the therapeutic effect of APL. The proteins regulated in
COPD model and APL-treatment group could be attributed to similar molecular functions, such as oxidoreductase
activity and antioxidant activity (peroxidase activity, catalase activity, and thioredoxin peroxidase activity) (Figure
4A,B).

The KEGG pathway affiliation of these proteins revealed that the proteins regulated in COPD and APL-treated
rats belong to energy metabolism (e.g. glycolysis/gluconeogenesis and pyruvate metabolism), fatty acid metabolism,
tight junction etc. (Tables 3 and 4). Furthermore, using the STRING 10 and Cytoscape, we analyzed protein net-
works to identify the hub proteins that may exert important functions in COPD and APL-treated rats. As shown in
Figure 5, we used the Cytoscape plug in ‘network analyzer’ and a robustness test to identify the hubs. The main im-
portant proteins in both networks were Hsp90ab1 (heat shock protein HSP 90-β), Pkm (pyruvate kinase isozymes
M1/M2), Tpi1 (Tpi1 protein), Gapdh (glyceraldehyde-3-phosphate dehydrogenase), RGD1562758 (Gapdh), EN-
SRNOG00000015290 (triosephosphate isomerase), Acly (ATP-citrate synthase isoform 1), Pgk1 (phosphoglycerate
kinase 1), RGD1562690 (L-lactate dehydrogenase A chain), Sod1 (superoxide dismutase 1) (Supplementary Tables
S5 and S6). The results revealed that the important proteins in the networks belonged to energy metabolism and
oxidative stress.
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Table 3 Analyzed pathways of proteomics data regulated in lung tissue of COPD rats

Term Total P-value FDR

Glycolysis/gluconeogenesis 10 6.64E-06 0.0074

Hypertrophic cardiomyopathy (HCM) 9 5.29E-05 0.0589

Dilated cardiomyopathy 9 8.70E-05 0.0969

Pyruvate metabolism 6 3.62E-04 0.4022

Glyoxylate and dicarboxylate metabolism 4 7.99E-04 0.8869

Tight junction 9 0.001079 1.1955

Citrate cycle (TCA cycle) 5 0.00125 1.3842

Leukocyte transendothelial migration 8 0.002374 2.6132

Focal adhesion 10 0.003903 4.2629

Tryptophan metabolism 5 0.004803 5.222

Valine, leucine, and isoleucine
degradation

5 0.006122 6.6129

Adherens junction 6 0.00651 7.0181

Cardiac muscle contraction 6 0.008115 8.6774

Propanoate metabolism 4 0.015539 16.0102

Prion diseases 4 0.018217 18.5205

Fatty acid metabolism 4 0.029489 28.3564

Arrhythmogenic right ventricular
cardiomyopathy (ARVC)

5 0.030762 29.3969

Purine metabolism 7 0.03707 34.3504

Abbreviation: FDR, false discovery rate.

Table 4 Analyzed pathways of proteomics data regulated in lung tissue of APL-treated rats

Term Total P-value FDR

Tight junction 10 1.82E-04 0.1969

Focal adhesion 12 2.14E-04 0.231

Glycolysis/gluconeogenesis 8 3.20E-04 0.3449

Pyruvate metabolism 6 3.26E-04 0.3514

Regulation of actin cytoskeleton 11 0.001517 1.627

Leukocyte transendothelial migration 8 0.002086 2.2319

ECM–receptor interaction 6 0.008647 8.9587

HCM 6 0.010044 10.3356

Citrate cycle (TCA cycle) 4 0.011261 11.5206

Metabolism of xenobiotics by cytochrome
P450

5 0.01431 14.4252

Glyoxylate and dicarboxylate metabolism 3 0.014596 14.6931

Prion diseases 4 0.017161 17.0621

Drug metabolism 5 0.026207 24.9496

Adherens junction 5 0.028629 26.9431

Tryptophan metabolism 4 0.029584 27.7156

Purine metabolism 7 0.033727 30.9815

Glutathione metabolism 4 0.043462 38.1359

Abbreviation: FDR, false discovery rate.

Alterations of molecules on the metabolome level
Finally, to characterize the metabolic profile of COPD rats, the levels of metabolites were detected by LC-MS. Com-
pared with those in healthy control rats, 49 metabolites were identified in COPD model rats. After treatment with
APL, compared with those in COPD model rats, 32 metabolites were identified in APL-treated rats (Supplementary
Tables S7 and S8). To have a better understanding of these metabolites, MetaboAnalyst was used to study the overview
of systematic metabolome changes based on pathway analysis. The metabolic perturbation was analyzed from the per-
spective of pathway enrichment analysis combined with topology analysis. The most relevant pathways on the basis
of metabolites were shown in Figure 6A,B. The perturbation of arachidonic acid and linoleic acid metabolism was
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Figure 5. The networks of proteins constructed by STRING and Cytoscape.

Network of regulated proteins in lung tissues of COPD (A) and APL-treated rats (B), analyzed by STRING (version 10) and Cytoscape soft-

ware. The protein interaction networks were generated by STRING 10, then analyzed and visualized by Cytoscape. Nodes were connected

proteins within the network. The top hub proteins were indicated (green) after removal of a node.

Figure 6. Metabolomic pathway analysis with MetaboAnalyst.

Pathway analysis of the metabolites in lung tissues of COPD (A) and APL-treated rats (B). On the basis of all differential metabolites (Supple-

mentary Tables S7 and S8 in the Supplementary material), global metabolic disorders of the most relevant pathways were revealed using the

MetaboAnalyst. A Google-map style interactive visualization system was implemented to facilitate data exploration and generate pathway

views.

considered to be responsible for COPD. More importantly, insights into the underlying pathogenesis of COPD could
be provided from pathways regarding defined biomarkers (Tables 5 and 6). These metabolic anomalies were primarily
involved in lipid metabolism, which are discussed in detail later.

Relation between transcriptome, proteome and metabolome levels
As discussed above, we detected many genes, proteins, and metabolites, which possessed extensive biological function
of complex physiological processes in COPD rats and during drug treatment. Next, we sought to analyze molecular
network in lung tissues of COPD and medical intervention in a preclinical setting by integrating transcriptomics,
proteomics, and metabolomics data.
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Table 5 Analyzed pathways of metabolomics data regulated in lung tissue of COPD rats

Total Expected Hits Raw P log P FDR

Arachidonic acid
metabolism

36 0.6676 5 0.0004 7.8918 0.030278

Biosynthesis of
unsaturated fatty acids

42 0.7789 5 0.0008 7.1542 0.031654

Linoleic acid
metabolism

5 0.0927 2 0.0032 5.7455 0.086323

Steroid hormone
biosynthesis

70 1.2981 4 0.0371 3.2955 0.75027

Phenylalanine,
tyrosine, and
tryptophan
biosynthesis

4 0.0742 1 0.0722 2.6281 1

Taurine and
hypotaurine
metabolism

8 0.1484 1 0.1394 1.9704 1

Phenylalanine
metabolism

9 0.1669 1 0.1555 1.8614 1

α-Linolenic acid
metabolism

9 0.1669 1 0.1555 1.8614 1

Glyoxylate and
dicarboxylate
metabolism

16 0.2967 1 0.2600 1.3470 1

Citrate cycle (TCA
cycle)

20 0.3709 1 0.3141 1.1582 1

Fatty acid biosynthesis 43 0.7974 1 0.5584 0.5827 1

Primary bile acid
biosynthesis

46 0.8531 1 0.5833 0.5391 1

Table 6 Analyzed pathways of metabolomics data regulated in lung tissue of APL-treated rats

Total Expected Hits Raw P log P FDR

Glycerophospholipid metabolism 30 0.5136 3 0.0132 4.3261 0.88009

Arachidonic acid metabolism 36 0.6163 3 0.0217 3.8290 0.88009

Phenylalanine, tyrosine, and tryptophan
biosynthesis

4 0.0685 1 0.0668 2.7060 1

Linoleic acid metabolism 5 0.0856 1 0.0828 2.4910 1

α-Linolenic acid metabolism 9 0.1541 1 0.1443 1.9358 1

Phenylalanine metabolism 9 0.1541 1 0.1443 1.9358 1

Glycosylphosphatidylinositol (GPI)-anchor
biosynthesis

14 0.2397 1 0.2156 1.5342 1

Selenoamino acid metabolism 15 0.2568 1 0.2292 1.4732 1

Pantothenate and CoA biosynthesis 15 0.2568 1 0.2292 1.4732 1

Glycerolipid metabolism 18 0.3081 1 0.2685 1.3147 1

Aminoacyl-tRNA biosynthesis 67 1.1469 2 0.3197 1.1404 1

Steroid hormone biosynthesis 70 1.1983 2 0.3390 1.0817 1

Alanine, aspartate and glutamate metabolism 24 0.4108 1 0.3416 1.0743 1

Glycine, serine, and threonine metabolism 32 0.5478 1 0.4281 0.8484 1

Biosynthesis of unsaturated fatty acids 42 0.7190 1 0.5210 0.6520 1

Primary bile acid biosynthesis 46 0.7875 1 0.5540 0.5906 1

Purine metabolism 68 1.1641 1 0.6998 0.3569 1

However, making a direct correlation between mRNA, protein and metabolome levels is hampered by many dif-
ficulties [25-27]. The systems biological interpretation of the gene, protein, and metabolite measurements might be
more adequately described on the system level rather than focussed excessively on individual molecules [6,28].

To investigate the latent relationships of metabolite and gene (protein) measurements, a correlation network dia-
gram was constructed using the MetScape software (Figure 7) [23]. All the metabolite and gene (protein) measure-
ments were involved in the diagram to obtain a global view of complex physiological processes in COPD rats and
during drug treatment.

10 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Metabolic correlation networks of the differential metabolites and genes (proteins)

The compound reaction network with compounds (hexagons) and metabolic enzymes (rounds) as nodes and reactions as edges was con-

structed by MetScape. Input compounds were shown in blue, while input genes and proteins were shown in red. (A) Network of metabolites

and genes regulated in lung tissues of COPD rats. (B) Network of metabolites and genes regulated in lung tissues of APL-treated rats.

(C) Network of metabolites and proteins regulated in lung tissues of COPD rats. (D) Network of metabolites and proteins regulated in lung

tissues of APL-treated rats.

As shown in Figure 7A, the correlation networks were constructed based on the transcriptome and metabolome
information of COPD rats. We observed that gene—metabolite networks could be divided into three primary groups:
lipid metabolism, purine metabolism, and phosphoprotein. A number of genes and all the metabolite measurements
of COPD rats were included in lipid metabolism. Similarly, many genes and most of metabolite measurements of drug
treatment rats also were included in lipid metabolism (Figure 7B).

Then, we constructed the protein–metabolite networks based on the metabolite and protein measurements of
COPD rats (Figure 7C) and drug-treated rats (Figure 7D). The results showed that both the networks consisted of
two main components: lipid metabolism and purine metabolism. In these networks, more than half of proteins and
almost all the metabolites could be mapped to lipid metabolism.

These results implied that lipid metabolism disorder play important roles in the pathogenesis of COPD, and APL
could provide therapeutic effects on COPD by regulating lipid metabolism.

To investigate the latent relationships of the transcript and protein measurements, we further analyzed the overlap-
ping pathways between transcript and protein measurements. These transcripts and proteins of COPD rats could be
mapped into three common pathways, such as fatty acid metabolism, propanoate metabolism, and valine, leucine
and isoleucine degradation, which could be attributed to lipid metabolism, energy metabolism and amino acid
metabolism (Tables 1,3,7). However, we found two common genes (proteins) in these pathways. The two genes
make two corresponding proteins: acetyl-CoA acetyltransferase (mitochondrial), trifunctional enzyme subunit α
(mitochondrial). The results of integrated pathway analysis revealed that regulation of lipid metabolism, amino acid
metabolism, and energy metabolism might be the important biological function of complex physiological processes
in COPD rats.

c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Table 7 The common pathway amongst the genes, proteins, and metabolites

Term Gene

Valine, leucine, and isoleucine degradation Proteomics HSD17B10, IVD, ALDH2, ACAT1, HADHA

Transcriptomics BCKDHA, ALDH6A1, ACADM, HEATR7B2,
RGD1562373, ECHS1, ACAT1, HADHA, AUH,
RGD1564209, ALDH7A1, HMGCS2, OXCT1, ALDH1A7,
HADH, PCCB, ACAA1

Propanoate metabolism Proteomics LOC365605, LDHA, LOC502220, LOC366627,
LOC502627, LOC366355, ALDH2, LOC503477, ACAT1,
HADHA, LOC364462

Transcriptomics ALDH6A1, ACADM, SUCLG2, ECHS1, ACAT1, HADHA
VSX1, ACSS1, ALDH7A1, MLYCD, ALDH1A7, SUCLA2,
PCCB

Fatty acid metabolism Proteomics ALDH2, ACAT1, DCI, HADHA

Transcriptomics ACADVL, ACOX1, ALDH7A1, ACADM, RGD1562373,
ECHS1, ALDH1A7, HADH, PECI, ACAT1, HADHA,
ACAA1

Arachidonic acid metabolism Transcriptomics LTA4H, PTGES

Metabolites 5-HPETE, LTA4, 5-HETE, 20-OH-LTB4, LXA4, PGE2

Bold text represent two common genes (proteins in these pathways

Figure 8. Pathway analysis of transcripts, proteins and metabolites in arachidonic acid metabolism.

Simplified arachidonic acid metabolism featuring transcriptomics and metabolomics regulations in lung tissue of COPD (A) and APL-treated

(B) rats, according to KEGG nomenclature. Transcriptomics data are presented as ovals and metabolites data as rectangles. Regulation is

color coded in which red stands for up-regulated (red, ↑), blue for down-regulated (blue, ↓), and black for unregulated.

However, the transcripts and proteins of drug-treated rats were only mapped into a common pathway: adherens
junction (Tables 2 and 4). This weak pathway correlation could be explained in part by differential regulation and life
times of RNAs and proteins.

Arachidonic acid metabolism: a typical example of the transcript, protein,
and metabolite datasets
We strengthened pathway analyses of transcript, protein, and metabolite datasets, and found that a number of tran-
scripts and proteins and almost all the metabolites could be mapped to lipid metabolism. In addition, in the path-
way enrichment analysis of metabolites, we found that arachidonic acid metabolism was a strongly regulated path-
way. Thus, for a more detailed pathway analysis of transcripts, proteins, and metabolites, we picked arachidonic acid
metabolism as a typical regulated pathway (Figure 8). As shown in Figure 8 A, six metabolites and two transcripts of
COPD rats were included in arachidonic acid metabolism, and these transcripts and metabolites were up-regulated,
which suggested that arachidonic acid metabolism pathway was activated, and the expression levels of inflammatory
mediators such as PGE2 were increased (Table 7). Five down-regulated metabolites and one down-regulated tran-
script of drug-treated rats were mapped into arachidonic acid metabolism, which suggested that arachidonic acid
metabolism and the production of inflammatory mediators were inhibited by APL (Figure 8B). However, protein

12 c© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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measurements were not included in arachidonic acid metabolism, and these proteins might participate in regulating
the upstream or downstream components of arachidonic acid metabolism pathway.

Conclusion
Integrating transcriptomics, proteomics, and metabolomics data is becoming more important to analyze in mam-
malian tissues disease states and medical intervention in a preclinical setting. However, attempts thus far to combine
omics data streams have been met with limited success.

In our study, we detected a number of RNA-, protein-, and metabolite-based biomarker candidates. In particular,
we observed regulation of oxidoreductase activity, channel activity, antioxidant activity, fatty acid binding, glucose or
fatty acid metabolism in lung tissues of COPD rats and APL-treated rats. Consistently, the results of combined anal-
yses of three datasets demonstrated that lipid metabolism were the critical pathways in COPD rats and APL-treated
rats. Moreover, we found that the arachidonic acid metabolism was a strongly regulated pathway. In this pathway, we
observed up-regulation of the metabolites (20-HETE, 5-HETE, LTA4, 20-OH-LTB4, LXA4 and PGE2) and metabolic
enzymes (LTA4H (leukotriene A4 hydrolase), PTGS2 (prostaglandin-endoperoxide synthase 2)) in COPD rats and
down-regulation of the metabolites (5-HETE, LTA4, LTB4, and LXA4) and metabolic enzymes (PTGS1/2/3) involved
in APL-treated rats. A large number of researches indicated that LXA4 and LXB4 promote the resolution of inflamma-
tion. LXA4 and LXB4 could inhibit neutrophil chemotaxis, eosinophil trafficking and transmigration, generation of
superoxide anions by neutrophils, and degranulation of azurophilic granules, and block natural killer cell cytotoxicity
and tumor necrosis factor-α release from T cells [29-31]. In addition, many studies found LTB4, cysteinyl-containing
LTs, and PGE2, PGF2 α, 6-oxo-PGF1 α, and thromboxane B2 were found in sputum samples of COPD patients [32].
Using network and pathway analyses, we could demonstrate in lipid metabolism pathways, such as arachidonic acid
metabolism, the pathological changes of COPD rats and specific restoring effects of APL treatment in lung tissues.
However, the major limitation of this approach is that identified genes, proteins and metabolites need to be further
experimentally validated as marker sets for targetted and integrated transcriptomics, proteomics, and metabolomics
approaches.
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